Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-(2-Chlorophenyl)-6-fluoro-2-methyl-1*H*-indole-3-carbonitrile

Kun Yang,^a* Pei-Fan Li,^b* Yan Liu^b and Zhi-Zhong Fang^a

^aTeaching & Research Center, Tianjin Medical University, Tianjin 300070, People's Republic of China, and ^bPharmacy Department, Tianjin Medical College, Tianjin 300222, People's Republic of China

Correspondence e-mail: tijmu@tijmu.edu.cn, austinmm@126.com

Received 24 March 2011; accepted 25 March 2011

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.002 Å; R factor = 0.041; wR factor = 0.113; data-to-parameter ratio = 21.4.

In the title compound, $C_{16}H_{10}CIFN_2$, the dihedral angle between the indole ring system and the benzyl ring is 80.91 (5)°. The crystal packing features $C-H\cdots Cl$, $C-H\cdots F$ and $C-H\cdots \pi$ interactions.

Related literature

For the synthesis of the title compound, see: Du *et al.* (2006). For its precursor, see: Jin *et al.* (2009). For related structures, see: Li & Huang (2009); Li *et al.* (2009, 2010*a*,*b*).

Experimental

Crystal data $C_{16}H_{10}CIFN_2$ $M_r = 284.71$

Orthorhombic, *Pbca* a = 7.4581 (9) Å b = 16.8480 (15) Å c = 21.356 (2) Å $V = 2683.5 (5) \text{ Å}^{3}$ Z = 8

Data collection

Rigaku Saturn724 CCD diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2009) $T_{\rm min} = 0.929, T_{\rm max} = 0.945$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.041$ 182 parameters $wR(F^2) = 0.113$ H-atom parameters constrainedS = 1.11 $\Delta \rho_{max} = 0.39$ e Å⁻³3893 reflections $\Delta \rho_{min} = -0.20$ e Å⁻³

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C3-C8 benzene ring.

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C7 - H7 \cdots F1^{i}$ $C7 - H7 \cdots C11^{ii}$ $C15 - H15 \cdots Cg1^{iii}$	0.95	2.54	3.1638 (16)	123
	0.95	2.73	3.5296 (14)	142
	0.95	2.92	3.7246 (14)	143

Symmetry codes: (i) $x + \frac{1}{2}$, y, $-z + \frac{3}{2}$; (ii) $-x + \frac{3}{2}$, $y + \frac{1}{2}$, z; (iii) x - 1, y, z.

Data collection: *CrystalClear* (Rigaku, 2009); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *CrystalStructure* (Rigaku, 2009); software used to prepare material for publication: *CrystalStructure*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5823).

References

- Du, Y., Liu, R., Linn, G. & Zhao, K. (2006). Org. Lett. 8, 5919-5922.
- Jin, H., Li, P., Liu, B. & Cheng, X. (2009). Acta Cryst. E65, o236.
- Li, J.-S., He, Q.-X. & Li, P.-Y. (2010a). Acta Cryst. E66, 0111.
- Li, J.-S., He, Q.-X. & Li, P.-Y. (2010b). Acta Cryst. E66, 097.
- Li, J.-S. & Huang, P.-M. (2009). Acta Cryst. E65, 01759.
- Li, P., Wang, W., Li, C. & Bian, X. (2009). Acta Cryst. E65, o1284.
- Rigaku (2009). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Mo $K\alpha$ radiation $\mu = 0.29 \text{ mm}^{-1}$

 $0.26 \times 0.22 \times 0.20$ mm

28426 measured reflections

3893 independent reflections

3219 reflections with $I > 2\sigma(I)$

T = 113 K

 $R_{\rm int} = 0.034$

supplementary materials

Acta Cryst. (2011). E67, o1041 [doi:10.1107/S1600536811011214]

1-(2-Chlorophenyl)-6-fluoro-2-methyl-1*H*-indole-3-carbonitrile

K. Yang, P.-F. Li, Y. Liu and Z.-Z. Fang

Comment

Indoles are an important compound possessing pharmaceutical properties. Extensive investigation on the crystal structures of indoles helps disclose their structure-activity relationship. For continuing our reseach, herein, we reported the crystal structure of the title indole derivative.

In the molecular structure, (I) (Fig. 1), the indole ring system is almost planar with a dihedral angle of 0.85 (6)° between its pyrrole ring and fused benzene ring. The indole ring forms an angle of 80.91 (5)° with the chlorobenzene ring.

Experimental

The title compound was prepared according to the method of the literature (Du, *et al.*, 2006). Colourless prisms were grown from a mixture of ethyl actate and petroleum ether.

Refinement

All H atoms were positioned geometrically (C—H = 0.95 and 0.98 Å)and refined as riding with $U_{iso}(H) = 1.2U_{eq}(CH)$ or $1.5U_{eq}(CH_3)$.

Figures

Fig. 1. The molecular structure of (I) with 50% probability displacement ellipsoids.

1-(2-Chlorophenyl)-6-fluoro-2-methyl-1H-indole-3-carbonitrile

Crystal data $C_{16}H_{10}CIFN_2$ $M_r = 284.71$ Orthorhombic, *Pbca* Hall symbol: -P 2ac 2ab a = 7.4581 (9) Å b = 16.8480 (15) Å

F(000) = 1168 $D_x = 1.409 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71075 \mathbf{A} Cell parameters from 10281 reflections $\theta = 1.5-31.4^\circ$ $\mu = 0.29 \text{ mm}^{-1}$

c = 21.356 (2) Å
$V = 2683.5 (5) \text{ Å}^3$
Z = 8

Data collection

Rigaku Saturn724 CCD diffractometer	3893 independent reflections
Radiation source: rotating anode	3219 reflections with $I > 2\sigma(I)$
multilayer	$R_{\rm int} = 0.034$
Detector resolution: 14.222 pixels mm ⁻¹	$\theta_{\text{max}} = 30.0^{\circ}, \theta_{\text{min}} = 1.9^{\circ}$
ω scans	$h = -10 \rightarrow 9$
Absorption correction: multi-scan (CrystalClear; Rigaku, 2009)	$k = -23 \rightarrow 23$
$T_{\min} = 0.929, \ T_{\max} = 0.945$	<i>l</i> = −30→30
28426 measured reflections	

T = 113 K Prism, colorless $0.26 \times 0.22 \times 0.20$ mm

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.041$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.113$	H-atom parameters constrained
<i>S</i> = 1.11	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0644P)^{2} + 0.1004P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
3893 reflections	$(\Delta/\sigma)_{\text{max}} = 0.001$
182 parameters	$\Delta \rho_{max} = 0.39 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.20 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

												2.
Fractional	atomic	coordinates	and	igotropic	or	antivalant	t isotronic	dignl	acomont	naramotors	114	-)
rraciionai	aiomic	coorainaies	unu	isonopic	Ur.	equivalent	isonopic	uispi	ucemeni	parameters	(A	,
				1		1	1	1		1	1	/

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl1	0.50520 (4)	0.220294 (19)	0.641958 (16)	0.03226 (11)
F1	0.61121 (11)	0.54670 (5)	0.76153 (4)	0.0480 (2)

N1	0.39260 (12)	0.37712 (5)	0.59488 (4)	0.0236 (2)
N2	0.79477 (16)	0.43384 (7)	0.42798 (6)	0.0420 (3)
C1	0.45553 (17)	0.36559 (7)	0.53489 (5)	0.0258 (2)
C2	0.60108 (16)	0.41469 (7)	0.52619 (6)	0.0271 (3)
C3	0.63160 (15)	0.45816 (7)	0.58328 (6)	0.0265 (3)
C4	0.49938 (14)	0.43272 (7)	0.62558 (6)	0.0237 (2)
C5	0.48747 (16)	0.46061 (7)	0.68659 (6)	0.0280 (3)
H5	0.3986	0.4427	0.7151	0.034*
C6	0.61408 (17)	0.51607 (7)	0.70243 (6)	0.0337 (3)
C7	0.74735 (17)	0.54359 (8)	0.66235 (7)	0.0361 (3)
H7	0.8315	0.5819	0.6765	0.043*
C8	0.75667 (16)	0.51503 (7)	0.60210 (7)	0.0318 (3)
H8	0.8460	0.5336	0.5740	0.038*
C9	0.36953 (19)	0.30813 (8)	0.49124 (6)	0.0333 (3)
H9A	0.3812	0.2543	0.5081	0.040*
H9B	0.4286	0.3109	0.4503	0.040*
H9C	0.2423	0.3213	0.4866	0.040*
C10	0.70533 (17)	0.42350 (7)	0.47083 (6)	0.0317 (3)
C11	0.25337 (16)	0.33290 (7)	0.62467 (5)	0.0223 (2)
C12	0.28935 (15)	0.25756 (7)	0.64802 (5)	0.0230 (2)
C13	0.15588 (16)	0.21330 (7)	0.67690 (5)	0.0271 (3)
H13	0.1800	0.1612	0.6918	0.032*
C14	-0.01309 (16)	0.24642 (8)	0.68363 (6)	0.0277 (3)
H14	-0.1052	0.2169	0.7037	0.033*
C15	-0.04958 (18)	0.32238 (7)	0.66141 (6)	0.0295 (3)
H15	-0.1658	0.3446	0.6664	0.035*
C16	0.08411 (16)	0.36557 (7)	0.63194 (6)	0.0276 (3)
H16	0.0598	0.4175	0.6167	0.033*

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Cl1	0.02051 (19)	0.02941 (18)	0.0468 (2)	0.00492 (11)	0.00001 (12)	0.00824 (12)
F1	0.0450 (5)	0.0454 (5)	0.0535 (5)	-0.0100 (4)	-0.0018 (4)	-0.0201 (4)
N1	0.0198 (5)	0.0213 (4)	0.0298 (5)	-0.0031 (4)	0.0030 (4)	0.0022 (4)
N2	0.0363 (7)	0.0436 (7)	0.0461 (6)	0.0006 (5)	0.0128 (5)	0.0089 (5)
C1	0.0240 (6)	0.0243 (5)	0.0290 (5)	0.0016 (5)	0.0019 (5)	0.0054 (4)
C2	0.0218 (6)	0.0250 (5)	0.0344 (6)	0.0014 (4)	0.0040 (5)	0.0079 (5)
C3	0.0199 (6)	0.0210 (5)	0.0385 (6)	0.0020 (4)	0.0007 (5)	0.0081 (4)
C4	0.0178 (6)	0.0181 (5)	0.0353 (6)	0.0001 (4)	-0.0013 (4)	0.0036 (4)
C5	0.0234 (6)	0.0230 (6)	0.0376 (6)	-0.0001 (4)	0.0013 (5)	0.0006 (5)
C6	0.0311 (7)	0.0253 (6)	0.0446 (7)	0.0007 (5)	-0.0046 (6)	-0.0057 (5)
C7	0.0267 (7)	0.0220 (6)	0.0597 (8)	-0.0050 (5)	-0.0061 (6)	0.0016 (6)
C8	0.0199 (6)	0.0225 (6)	0.0528 (7)	-0.0007 (4)	0.0011 (6)	0.0100 (5)
C9	0.0349 (7)	0.0345 (7)	0.0304 (6)	-0.0037 (6)	0.0011 (5)	0.0007 (5)
C10	0.0259 (7)	0.0291 (6)	0.0402 (6)	0.0026 (5)	0.0047 (5)	0.0088 (5)
C11	0.0194 (6)	0.0216 (5)	0.0259 (5)	-0.0029 (4)	0.0004 (4)	0.0022 (4)
C12	0.0188 (6)	0.0235 (5)	0.0267 (5)	0.0008 (4)	-0.0021 (4)	0.0014 (4)

supplementary materials

C13 C14 C15 C16	0.0263 (6) 0.0230 (6) 0.0199 (6) 0.0229 (6)	0.0255 (5) 0.0324 (6) 0.0318 (6) 0.0241 (6)	0.0295 (5) 0.0275 (5) 0.0369 (6) 0.0358 (6)	-0.0022 (5) -0.0069 (5) 0.0006 (5) 0.0015 (5)	-0.0015 (5) 0.0020 (5) 0.0032 (5) 0.0009 (5)	0.0070 (4) 0.0031 (5) -0.0002 (5) 0.0041 (5)	
Geometric param	neters (Å, °)						
C11 - C12		1 7328 (12)	C7—C	8	1 375	(2)	
F1-C6		1 3636 (15)	С7—Н	7	0.950	0	
N1-C1		1.3030(15) 1.3780(15)	С? Н	, 8	0.950	0	
N1—C4		1.3934 (14)	С9—Н	9A	0.980	0	
N1-C11		1.4276 (14)	С9—Н	9B	0.980	0	
N2—C10		1.1457 (16)	С9—Н	9C	0.980	0	
C1—C2		1.3775 (16)	C11—0	C16	1.385	7 (16)	
C1—C9		1.4892 (17)	C11—0	C12	1.390	0 (15)	
C2-C10		1.4227 (17)	C12—0	213	1.388	3 (16)	
C2—C3		1.4404 (18)	C13—0	214	1.385	7 (17)	
С3—С8		1.3963 (17)	C13—I	H13	0.950	0	
C3—C4		1.4045 (16)	C14—0	C15	1.391	8 (18)	
C4—C5		1.3879 (18)	C14—I	H14	0.950	0	
C5—C6		1.3708 (17)	C15—0	C16	1.3855 (17)		
С5—Н5		0.9500	C15—H15		0.9500		
С6—С7		1.3914 (19)	C16—H16		0.9500		
C1—N1—C4		109.73 (9)	С3—С8—Н8		120.8		
C1—N1—C11		126.05 (10)	С1—С9—Н9А		109.5		
C4—N1—C11		123.83 (9)	С1—С9—Н9В		109.5		
C2-C1-N1		108.01 (10)	H9A—C9—H9B		109.5		
C2—C1—C9		130.19 (11)	С1—С9—Н9С		109.5		
N1—C1—C9		121.80 (11)	Н9А—С9—Н9С		109.5		
C1—C2—C10		127.27 (12)	Н9В—С9—Н9С		109.5		
C1—C2—C3		108.40 (10)	N2—C10—C2		176.12 (15)		
C10—C2—C3		124.33 (11)	C16—C11—C12		119.89 (10)		
C8—C3—C4		119.56 (12)	C16—0	C11—N1	120.3	5 (10)	
C8—C3—C2		134.28 (11)	C12—0	C11—N1	119.7	3 (10)	
C4—C3—C2		106.16 (10)	C13—0	C12—C11	120.7	6 (11)	
C5—C4—N1		129.26 (11)	C13—0	C12—Cl1	120.3	1 (9)	
C5—C4—C3		123.06 (11)	C11—0	C12—Cl1	118.9	1 (9)	
N1—C4—C3		107.68 (11)	C14—0	C13—C12	118.8	1 (11)	
C6—C5—C4		114.73 (11)	C14—0	С13—Н13	120.6		
C6—C5—H5		122.6	C12—0	С13—Н13	120.6		
C4—C5—H5		122.6	C13—0	C14—C15	120.8	5 (11)	
F1—C6—C5		118.39 (12)	C13—0	C14—H14	119.6		
F1—C6—C7		117.04 (11)	C15—0	C14—H14	119.6		
C5—C6—C7		124.57 (13)	C16—0	C15—C14	119.8	0(12)	
C8 - C7 - C6		119.68 (12)	C16—0	CIS—HIS	120.1		
C8—C7—H7		120.2	C14—0	-HI5 	120.1	(11)	
С6—С7—Н7		120.2	C15—0	CI6—CII	119.8	b (11)	
C/—C8—C3		118.39 (12)	C15—0	-16—H16	120.1		
C7-C8-H8		120.8	C11—0	L16—H16	120.1		

C4—N1—C1—C2	-1.08 (13)	C4—C5—C6—C7	-0.48 (18)
C11—N1—C1—C2	-174.11 (10)	F1—C6—C7—C8	-179.81 (11)
C4—N1—C1—C9	178.91 (11)	C5—C6—C7—C8	0.4 (2)
C11—N1—C1—C9	5.89 (17)	C6—C7—C8—C3	-0.63 (18)
N1—C1—C2—C10	-178.61 (11)	C4—C3—C8—C7	0.91 (17)
C9—C1—C2—C10	1.4 (2)	C2—C3—C8—C7	-178.87 (13)
N1—C1—C2—C3	0.59 (13)	C1-C2-C10-N2	177 (100)
C9—C1—C2—C3	-179.40 (12)	C3—C2—C10—N2	-2(2)
C1—C2—C3—C8	179.90 (13)	C1-N1-C11-C16	-104.36 (13)
C10—C2—C3—C8	-0.9 (2)	C4—N1—C11—C16	83.56 (14)
C1—C2—C3—C4	0.10 (13)	C1-N1-C11-C12	77.42 (15)
C10-C2-C3-C4	179.33 (11)	C4—N1—C11—C12	-94.66 (13)
C1—N1—C4—C5	-178.37 (12)	C16-C11-C12-C13	2.09 (17)
C11—N1—C4—C5	-5.16 (18)	N1-C11-C12-C13	-179.69 (10)
C1—N1—C4—C3	1.15 (13)	C16-C11-C12-Cl1	-176.62 (9)
C11—N1—C4—C3	174.36 (10)	N1-C11-C12-Cl1	1.61 (15)
C8—C3—C4—C5	-1.03 (17)	C11-C12-C13-C14	-1.76 (17)
C2—C3—C4—C5	178.81 (11)	Cl1—C12—C13—C14	176.93 (9)
C8—C3—C4—N1	179.41 (10)	C12-C13-C14-C15	0.59 (18)
C2—C3—C4—N1	-0.75 (12)	C13—C14—C15—C16	0.24 (19)
N1—C4—C5—C6	-179.77 (11)	C14-C15-C16-C11	0.07 (19)
C3—C4—C5—C6	0.78 (17)	C12-C11-C16-C15	-1.22 (17)
C4C5	179.77 (11)	N1-C11-C16-C15	-179.44 (11)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C3–C8 benzene ring.				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C7—H7…F1 ⁱ	0.95	2.54	3.1638 (16)	123
C7—H7···Cl1 ⁱⁱ	0.95	2.73	3.5296 (14)	142
C15—H15···Cg1 ⁱⁱⁱ	0.95	2.92	3.7246 (14)	143
Symmetry codes: (i) $x+1/2$, y , $-z+3/2$; (ii) $-x+3/2$, $y+3/2$	1/2, <i>z</i> ; (iii) <i>x</i> -1, <i>y</i> , <i>z</i> .			

